Preparation of mica supported lipid bilayers for high resolution optical microscopy imaging.

نویسندگان

  • Artur Matysik
  • Rachel S Kraut
چکیده

Supported lipid bilayers (SLBs) are widely used as a model for studying membrane properties (phase separation, clustering, dynamics) and its interaction with other compounds, such as drugs or peptides. However SLB characteristics differ depending on the support used. Commonly used techniques for SLB imaging and measurements are single molecule fluorescence microscopy, FCS and atomic force microscopy (AFM). Because most optical imaging studies are carried out on a glass support, while AFM requires an extremely flat surface (generally mica), results from these techniques cannot be compared directly, since the charge and smoothness properties of these materials strongly influence diffusion. Unfortunately, the high level of manual dexterity required for the cutting and gluing thin slices of mica to the glass slide presents a hurdle to routine use of mica for SLB preparation. Although this would be the method of choice, such prepared mica surfaces often end up being uneven (wavy) and difficult to image, especially with small working distance, high numerical aperture lenses. Here we present a simple and reproducible method for preparing thin, flat mica surfaces for lipid vesicle deposition and SLB preparation. Additionally, our custom made chamber requires only very small volumes of vesicles for SLB formation. The overall procedure results in the efficient, simple and inexpensive production of high quality lipid bilayer surfaces that are directly comparable to those used in AFM studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy

Cell membranes are typically very complex, consisting of a multitude of different lipids and proteins. Supported lipid bilayers are widely used as model systems to study biological membranes. Atomic force microscopy and force spectroscopy techniques are nanoscale methods that are successfully used to study supported lipid bilayers. These methods, especially force spectroscopy, require the relia...

متن کامل

Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers.

Supported dipalmitoylphosphatidylcholine (DPPC) bilayers are widely used membrane systems in biophysical and biochemical studies. Previously, short-range positional and orientational order of lipid headgroups of supported DPPC bilayers was observed at room temperature using low deflection noise frequency modulation atomic force microscopy (FM-AFM). While this ordering was supported by X-ray dif...

متن کامل

Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins

Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bi...

متن کامل

DNA interaction with freestanding cationic lipid bilayers

We study the interaction of ds-DNA molecules with freestanding and supported cationic lipid bilayers. DNA fragments of different lengths (5, 10, 20, and 48 kbp) were adsorbed on lipid membranes consiting mainly of zwitterionic DOPC with added fractions of cationic DOTAP (1...10 %). Freestanding bilayers were modeled using giant unilamellar vesicles of sizes >100 μm. Supported lipid bilayers wer...

متن کامل

Buffering agents modify the hydration landscape at charged interfaces.

Buffering agents are widely used to stabilise the pH of solutions in soft matter and biological sciences. They are typically composed of weak acids and bases mixed in an aqueous solution, and can interact electrostatically with charged surfaces such as biomembranes. Buffers can induce protein aggregation and structural modification of soft interfaces, but a molecular-level picture is still lack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2014